Одно из возможных состояний носителей информации. Носители информации, их классификация, назначение

В русском языке так много понятий, что порой тяжело различить два очень похожих, но все же разных определения. Но есть такие термины, которые не несут в себе дополнительных смыслов, а имеют четкое и понятное толкование. К примеру, понятие «электронный носитель информации». Это определение материального носителя, который записывает, хранит и воспроизводит данные, которые обрабатываются благодаря вычислительной технике.

С чего все началось?

Более общим значением данного термина является «носитель информации» или «информационный носитель». Оно определяет материальный объект или среду, которая используется человеком. При этом такой предмет долго хранит данные, не используя дополнительное оборудование.

Если для хранения информации на электронных носителях нужен источник энергии, то простой носитель данных может оказаться камнем, деревом, бумагой, металлом и другими материалами.

Носителем информации может называться любой объект, который показывает данные, нанесенные на него. Считается, что информационные носители нужны для записи, хранения, чтения, передачи материалов.

Особенности

Нетрудно догадаться, что электронный носитель информации - это разновидность информационного носителя. Он также имеет свою классификацию, которая, хотя и не установлена официально, но используется многими специалистами.

Например, электронные носители могут иметь однократную или многократную запись. Здесь подразумеваются устройства:

  • оптические;
  • полупроводниковые;
  • магнитные.

Каждый из этих механизмов имеет несколько видов оборудования.

Электронный носитель информации - это, прежде всего, ряд преимуществ перед бумажными вариантами. Во-первых, благодаря технологиям объем архивируемых данных может быть практически неограниченным. Во-вторых, сам сбор и подача актуальной информации эргономичные и быстрые. В-третьих, цифровые данные представлены в удобном виде.

Но электронный носитель имеет и свои недостатки. К примеру, сюда можно отнести ненадежность оборудования, в некоторых случаях габариты устройства, зависимость от электроэнергии, а также требования к постоянному наличию аппарата, который бы мог считывать файлы с такого цифрового накопителя.

Разновидность: оптические диски

Электронный носитель информации - это устройство, которое может быть оптическим, полупроводниковым, магнитным. Это единственная классификация такого оборудования.

В свою очередь, оптические устройства также делятся на виды. Сюда относят лазерный диск, компакт-диск, мини-диски, Blu-ray, HD-DVD и так далее. Оптический диск назван так благодаря технологии считывания информации. Чтение с диска происходит с помощью оптического излучения.

Идея этого электронного носителя зародилась давно. Ученые, которые разрабатывали технологию, были удостоены Нобелевской премии. Способ воспроизводить информацию с оптического диска появился еще в 1958 году.

Сейчас оптический электронный носитель имеет 4 поколения. В первом поколении были: лазерный диск, компакт-диск и мини-диск. Во втором поколении популярными стали DVD и CD-ROM. В третьем поколении выделились Blu-ray и HD-DVD. В четвертом поколении активно развиваются Holographic Versatile Disc и SuperRens Disc.

Полупроводниковые носители

Следующий вид электронного носителя информации - это полупроводниковый. Сюда относят флеш-накопители и SSD-диски.

Флеш-память - это самый популярный электронный носитель, который имеет полупроводниковую технологию и программируемую память. Он востребован благодаря своим небольшим размерам, невысокой цене, механической прочности, приемлемому объему, скорости работы и низкому потреблению энергии.

Недостатками такого варианта являются ограниченный срок использования и зависимость от электростатического разряда. Впервые о флеш-накопителе заговорили в 1984 году.

SSD-диск - это полупроводниковый электронный носитель, который также называют твердотельным накопителем. Он пришел на смену жесткому диску, хотя на данный момент полностью не заменил его, а лишь стал дополнением к домашним системам. В отличие от жесткого диска, твердотельный накопитель основан на микросхемах памяти.

Главными преимуществами такого носителя являются его компактные размеры, высокая скорость, износостойкость. Но вместе с этим у него большая стоимость.

Магнитные диски

И последним видом электронного носителя считаются магнитные устройства. К ним относят магнитные ленты, дискеты и жесткие диски. Поскольку первое и второе оборудование сейчас не используется, речь пойдет о ЖД.

Жесткий диск - это устройство, которое имеет произвольный доступ и основано на технологии магнитной записи. На данный момент это основной накопитель большинства современных компьютерных систем.

Его главным отличием от предыдущего вида, дискеты, является то, что запись осуществляется на алюминиевые или стеклянные пластины, которые покрывают слоем ферромагнитного материала.

Другие варианты

Несмотря на то что, говоря об электронных носителях, мы часто вспоминаем устройства, подключаемые к компьютеру, это не значит, что данное понятие применяется только в компьютерной технологии.

Распространение электронного носителя связано с удобством его использования, высокой скоростью записи и чтения. Поэтому это оборудование вытесняет бумажные носители.

Документы

Что такое паспорт с электронным носителем информации? Сначала этот вопрос может загнать человека в тупик. Но если хорошенько поразмыслить, то вспоминается такое понятие, как «биометрический паспорт».

Это государственный документ, который удостоверяет личность и гражданство путешественника в момент его переезда за границу государства и нахождения в другой стране. По сути, перед нами тот же паспорт, но с некоторыми нюансами.

Разница между биометрическим документом и традиционным паспортом в том, что первый является носителем специально вмонтированной микросхемы, которая хранит фотокарточку владельца и его личные данные.

Благодаря небольшой микросхеме можно получить фамилию, имя и отчество владельца документа, его дату рождения, номер паспорта, время выдачи и конец периода действия. По образцу, в микросхеме должны находиться биометрические данные человека. Сюда относят рисунок радужной оболочки глаза либо отпечаток пальца.

Введение документа: преимущества и недостатки

Несмотря на то что биометрический паспорт давно введен многими государствами, некоторые граждане негативно к нему относятся. Но у этого документа есть как преимущества, так и недостатки.

К преимуществам можно отнести то, что прохождение пограничного пункта теперь не занимает много времени. Если в таких местах есть специальное оборудование, которое может считывать микрочип, то прохождение границы становится безопасным и быстрым.

Но биометрический паспорт нравится далеко не всем гражданам. Многие считают, что введение подобного документа является проявлением тотального контроля, за которым стоит правительство США.

Уголовное дело

Развитие электронных носителей информации коснулось многих сфер. Сюда же можно отнести и уголовное дело. В 2012 году в Уголовно-процессуальный кодекс РФ ввели термин электронного носителя информации. Таким образом, подобные устройства могли стать вещественными доказательствами.

Электронные носители информации стали важной деталью при расследовании уголовного дела, при соблюдении некоторых условий. К примеру, данные с носителя должны иметь прямое отношение к расследованию. Кроме того, передачу их должен осуществлять достоверный источник, который можно было бы проверить. Данные должны иметь особый вид, к примеру, представленные видеозаписью, фотографиями, скриншотами и так далее. При изъятии цифровой информации нужно соблюдать установленные законы.

В ходе расследования уголовного дела необходимо вести и учет электронных носителей информации. В этом случае заводится журнал, в котором прописываются все устройства. Каждому присваивается идентификационный номер.

Важность электронных носителей в расследовании уголовного дела является спорным вопросом по сей день. Законодательно подобные устройства не отнесены к какому-либо источнику доказательств. Отсюда могут возникать разногласия.

Выводы

Электронные носители информации для современного человека - настоящая находка. С развитием технологий объемы архивов, которые хранят данные, становятся все больше. С каждым годом появляются новые возможности передачи и чтения информации.

Допечатные процессы предъявляют особые требования к регистрирующим средствам, использующимся для хранения информации. Такие требования являются следствием не только постоянных потребностей, связанных с увеличением объемов сохраняемых данных, обрабатываемых в процессе производства печатной продукции. Память имеет исключительное значение для постоянного резервирования данных внутри сети рабочих станций, а также для безопасной пересылки и архивирования данных. Несмотря на возросшие возможности передачи данных через сети или через Интернет, среды для сохранения данных будут продолжать играть важную роль в обмене информацией между заказчиком и исполнителем.

Благодаря новым технологиям и производственным процессам емкость носителей, предназначенных для хранения информации, постоянно увеличивается. Имеются предпосылки, что этот рост составит около 80% в год. Суть увеличения объемов хранения данных включает, вероятно, совокупность следующих факторов: повышение плотности записи, числа дорожек и оптимальное использование поверхности носителя. Супердиск с объемом памяти 120 Мб действительно соответствует данной задаче, несмотря на то, что по внешнему виду он является почти таким же, как гибкий 3,5-дюймовый диск. Однако супердиск по объему памяти превосходит последний почти в 83 раза. Сведения об объемах памяти различных носителей приведены в табл. 5.

Классификация носителей данных

Все имеющиеся в настоящее время носители информации могут подразделяться по различным признакам. В первую очередь, следует различать энергозависимые и энергонезависимые накопители информации.

Энергонезависимые накопители, используемые для архивирования и сохранения массивов данных, подразделяют:

Если требуется быстрый доступ к информации, как, например, при выводе или передаче данных, то используются носители с вращающимся диском. Для архивирования, выполняемого периодически (Backup), наоборот, более предпочтительными являются ленточные носители. Они имеют большие объемы памяти в сочетании с невысокой ценой, правда, при относительно невысоком быстродействии.

По назначению носители информации различаются на три группы:

  • распространение информации: носители с предварительно записанной информацией, такие как CD ROM или DVD-ROM;
  • архивирование: носители для одноразовой записи информации, такие как CD-R или DVD-R (R (record able) – для записи);
  • резервирование (Backup) или передача данных: носители с возможностью многоразовой записи информации, такие как дискеты, жесткий диск, MO, CD-RW (RW (rewritable) – перезаписываемые и ленты.
CD и DVD (ROM, R, RW)

CD-ROM был первоначально создан для того, чтобы распространять большие объемы информации (например, музыку и т.д.) за умеренную плату. Между тем он стал наиболее используемым носителем информации и для меньших объемов данных, например, при личном пользовании. В обозримом будущем CD-ROM могут быть заменены на DVD-ROM. DVD имеет емкость памяти от 4,7 до 17 GB. DVD-ROM может использоваться для распространения программных продуктов, мультимедиа, банков данных и для записи художественных фильмов. Увеличение объема памяти здесь стало возможным благодаря технологии двойного слоя. Она позволяет наносить на верхнюю и нижнюю стороны диска по два накопительных слоя, которые разделяются полуотражающим промежуточным слоем. При считывании информации лазер "прыгает" между обоими накопительными слоями.

Компакт-диск, кратко называемый CD-R (или, соответственно, DVD-R), представляет собой оптическую пластину для одноразовой записи в формате 5,25 дюйма с большой плотностью. Запись на такой диск может быть произведена только один раз в специальном записывающем устройстве. После этого информацию можно считывать посредством обычного дисковода CD-ROM. Типичная область применения – это передача информации в ограниченном количестве.

Более гибким, но менее распространенным является CD-RW (Rewritable). Этот сменный носитель информации может быть перезаписан заново до 1000 раз. Нанесенный слой при записи в результате термооптического процесса изменяет свою структуру с кристаллической на аморфную. В результате на этих местах изменяются отражающие свойства несущего слоя. Интенсивность излучения, соответствующая отражению от светлых или темных участков, преобразуется в бинарные числа 1 или 0.

Сменные накопители

Работа сменного накопителя основывается на использовании магнитных слоев, служащих для многократной записи информации.

Сменные диски SyQuest.

Производитель SyQuest, начав с выпуска дисков емкостью 44 Мб, довел со временем их память до 1,5 Гб. При этом увеличение памяти потребовало применения и нового дисковода. Эти сменные магнитные диски стали часто используемыми носителями данных в допечатных процессах. Картриджи данных. Начиная с 70-х годов эти магнитные накопители относятся к основным средам для резервирования данных. Главным образом они используются для резервного копирования данных на жестком диске персональных компьютеров (PC). Часто при резервировании в сети система автоматически подключает несколько картриджей для обработки накопителей со сменными дисками. Картриджи выпускаются в форматах 5,25 и 3,5 дюйма. Дисководы, предлагаемые различными изготовителями, бывают встроенными или присоединенными к персональному компьютеру. По сравнению с гибкими дисками скорость пересылки данных у картриджей выше, однако она меньше, чем у жестких дисков. Магнитный ленточный носитель данных (ширина ленты 4 или 8 мм). Среди множества четырех- и восьмимиллиметровых ленточных носителей информации имеются такие, которые в соответствии с новыми разработками отличаются более надежной защитой данных. Это свойство достигнуто благодаря тому, что уменьшено воздействие на подобные ленты статического электричества. Четырехмиллиметровые ленточные носители информации имеют емкость до 4 Гб. У восьмимиллиметровых носителей – 5 Гб. Они используются в банках данных, когда на магнитных лентах должны автоматически сохраняться большие массивы информации.



SuperDisk, ZIP, JAZ. Гибкий диск 3,5 дюйма является наиболее распространенным накопительным носителем в мире. В настоящее время в разработке находятся две системы: технология ZIP фирмы Iomega и SuperDisk (ранее называвшийся LS-120) фирмы Imation.

SuperDisk предоставляет возможность размещения информации объемом 120 Мб и почти не отличается внешне от традиционной 3,5-дюймовой дискеты. Носитель информации недорогой и "совместим в обе стороны", т.е. на новых дисководах можно также считывать и записывать классические дискеты 1,44 Мб.

Дискеты ZIP фирмы Iomega имеют объем от 100 до 250 Мб и по цене сопоставимы с носителем SuperDisk. Дискеты ZIP в настоящее время очень распространены в издательском деле, из чего можно сделать заключение о соответствующей потребности в сменных носителях такого вида. ZIP не "совместим в обе стороны", а дисковод может обрабатывать только носители ZIP. Время доступа к информации у диска ZIP меньше, чем у диска SuperDisk.

Дискеты 3,5 дюйма "JAZ" фирмы Iomega имеют объем хранения информации до 2 Гб. Магнитооптический диск (CD-MO). Магнитооптические носители, кратко называемые MO, получили широкое распространение. В пользу этой технологии однозначно говорит объем памяти: 640 Мб на носителе 3,5 дюйма и 2,6 Гб на носителе 5,25 дюйма. Их развитие идет быстро. Уже сегодня такие изготовители, как Sony и Philips, говорят об объеме 2,6 Гб у носителей 3,5 дюйма и 10,4 Гб у носителей 5,25 дюймо вого формата. Дисководы MO достигают скорости передачи данных 4 Мб/с, а среднее время доступа составляет менее 25 мс. Размещение и запись данных осуществляются посредством лазера.



Жесткие диски. Наконец следует упомянуть жесткие диски, которые входят в стандартную комплектацию практически каждого компьютера. Объем памяти этих носителей информации постоянно увеличивается и в последнее время достиг около 80 Гб для 31/2’’ диска.

Носитель информации (информационный носитель) – любой материальный объект, используемый человеком для хранения информации. Это может быть, например, камень, дерево, бумага, металл, пластмассы, кремний (и другие виды полупроводников), лента с намагниченным слоем (в бобинах и кассетах), фотоматериал, пластик со специальными свойствами (напр., в оптических дисках) и т. д., и т. п.

Носителем информации может быть любой объект, с которого возможно чтение (считывание) имеющейся на нём информации.

Носители информации применяются для:

  • записи;
  • хранения;
  • чтения;
  • передачи (распространения) информации.

Зачастую сам носитель информации помещается в защитную оболочку, повышающую его сохранность и, соответственно, надёжность сохранения информации (например, бумажные листы помещают в обложку, микросхему памяти – в пластик (смарт-карта), магнитную ленту – в корпус и т. д.).

К электронным носителям относят носители для однократной или многократной записи (обычно цифровой) электрическим способом:

  • оптические диски (CD-ROM, DVD-ROM, Blu-ray Disc);
  • полупроводниковые (флеш-память, дискеты и т. п.);
  • CD-диски (CD – Compact Disk, компакт диск), на который может быть записано до 700 Мбайт информации;
  • DVD-диски (DVD – Digital Versatile Disk, цифровой универсальный диск), которые имеют значительно большую информационную ёмкость (4,7 Гбайт), так как оптические дорожки на них имеют меньшую толщину и размещены более плотно;
  • диски HR DVD и Blu-ray, информационная ёмкость которых в 3–5 раз превосходит информационную ёмкость DVD-дисков за счёт использования синего лазера с длиной волны 405 нанометров.

Электронные носители имеют значительные преимущества перед бумажными (бумажные листы, газеты, журналы):

  • по объёму (размеру) хранимой информации;
  • по удельной стоимости хранения;
  • по экономичности и оперативности предоставления актуальной (предназначенной для недолговременного хранения) информации;
  • по возможности предоставления информации в виде, удобном потребителю (форматирование, сортировка).

Есть и недостатки:

  • хрупкость устройств считывания;
  • вес (масса) (в некоторых случаях);
  • зависимость от источников электропитания;
  • необходимость наличия устройства считывания/записи для каждого типа и формата носителя.

Накопитель на жёстких магнитных дисках или НЖМД (англ. hard (magnetic) disk drive, HDD, HMDD), жёсткий диск – запоминающее устройство (устройство хранения информации), основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие пластины, покрытые слоем ферромагнитного материала – магнитные диски. В НЖМД используется одна или несколько пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной («парковочной») зоне, где исключён их нештатный контакт с поверхностью дисков.

Также, в отличие от гибкого диска, носитель информации обычно совмещают с накопителем, приводом и блоком электроники. Такие жёсткие диски часто используются в качестве несъёмного носителя информации.

Оптические (лазерные) диски в настоящее время являются наиболее популярными носителями информации. В них используется оптический принцип записи и считывания информации с помощью лазерного луча.

DVD-диски могут быть двухслойными (емкость 8,5 Гбайт), при этом оба слоя имеют отражающую поверхность, несущую информацию. Кроме того, информационная емкость DVD-дисков может быть еще удвоена (до 17 Гбайт), так как информация может быть записана на двух сторонах.

Накопители оптических дисков делятся на три вида:

  • без возможности записи - CD-ROM и DVD-ROM (ROM – Read Only Memory, память только для чтения). На дисках CD-ROM и DVD-ROM хранится информация, которая была записана на них в процессе изготовления. Запись на них новой информации невозможна;
  • с однократной записью и многократным чтением – CD-R и DVD±R (R – recordable, записываемый). На дисках CD-R и DVD±R информация может быть записана, но только один раз;
  • с возможностью перезаписи – CD-RW и DVD±RW (RW – Rewritable, перезаписываемый). На дисках CD-RW и DVD±RW информация может быть записана и стерта многократно.

Основные характеристики оптических дисководов:

  • емкость диска (CD – до 700 Мбайт, DVD – до 17 Гбайт)
  • скорость передачи данных от носителя в оперативную память – измеряется в долях, кратных скорости 150 Кбайт/сек для CD-дисководов;
  • время доступа – время, нужное для поиска информации на диске, измеряется в миллисекундах (для CD 80–400 мс).

В настоящее время широкое распространение получили 52х-скоростные CD-дисководы – до 7,8 Мбайт/сек. Запись CD-RW дисков производится на меньшей скорости (например, 32х-кратной). Поэтому CD-дисководы маркируются тремя числами «скорость чтения х скорость записи CD-R х скорость записи CD-RW» (например, «52х52х32»).
DVD-дисководы также маркируются тремя числами (например, «16х8х6»).

При соблюдении правил хранения (хранение в футлярах в вертикальном положении) и эксплуатации (без нанесения царапин и загрязнений) оптические носители могут сохранять информацию в течение десятков лет.

Флеш-память (flash memory) – относится к полупроводникам электрически перепрограммируемой памяти (EEPROM). Благодаря техническим решениям, невысокой стоимости, большому объёму, низкому энергопотреблению, высокой скорости работы, компактности и механической прочности, флеш-память встраивают в цифровые портативные устройства и носители информации. Основное достоинство этого устройства в том, что оно энергонезависимое и ему не нужно электричество для хранения данных. Всю хранящуюся информацию во флэш-памяти можно считать бесконечное количество раз, а вот количество полных циклов записи, к сожалению, ограничено.

У флеш-памяти есть как свои преимущества перед другими накопителями (жесткие диски и оптические накопители) , так и свои недостатки, с которыми вы можете познакомиться из таблицы, расположенной ниже.

Тип накопителя Преимущества Недостатки
Жесткий диск Большой объём хранимой информации. Высокая скорость работы. Дешевизна хранения данных (в расчете на 1 Мбайт) Большие габариты. Чувствительность к вибрации. Шум. Тепловыделение
Оптический диск Удобство транспортировки. Дешевизна хранения информации. Возможность тиражирования Небольшой объём. Нужно считывающее устройство. Ограничения при операциях (чтение, запись). Невысокая скорость работы. Чувствительность к вибрации. Шум
Флеш-память Высокая скорость доступа к данным. Экономное энергопотребление. Устойчивость к вибрациям. Удобство подключения к компьютеру. Компактные размеры Ограниченное количество циклов записи

«Чтоб тебе жить в эпоху перемен» - весьма лаконичное и вполне понятное проклятие для человека скажем старше 30 лет. Современный этап развития человечества сделал нас невольными свидетелями уникальной «эпохи перемен». И тут даже играет роль не то что бы масштаб современного научного прогресса, по значимости для цивилизации переход от каменных орудий труда к медным очевидно был куда более знаковым, нежели удвоение вычислительных способностей процессора, которое само по себе будет явно более технологичным. Та огромная, все нарастающая скорость изменений в техническом развитии мира просто обескураживает. Если еще лет сто назад каждый уважаемый себя джентльмен просто обязан был быть в курсе всех «новинок» мира науки и техники, чтоб не выглядеть в глазах своего окружения глупцом и деревенщиной, то сейчас учитывая объемы и скорость порождения этих «новинок» отслеживать их всецело просто невозможно, даже вопрос так не ставится. Инфляция технологий, еще до недавно не мыслимых, и связанных с ними возможностей человека, фактически убили прекрасное направление в литературе – «Техническая фантастика». В ней отпала нужда, будущее стало многократно ближе, чем, когда либо, задуманный рассказ о «чудесной технологии» рискует дойти до читателя позже, нежели что-то подобное уже будет сходить с конвейеров НИИ.

Прогресс технической мысли человека всегда наиболее быстро отображался именно в сфере информационных технологий. Способы сбора, хранения, систематизации, распространения информации проходят красной нитью через всю историю человечества. Прорывы будь то в сфере технических, или гуманитарных наук, так или иначе, отзывались на ИТ. Пройденный человечеством цивилизационный путь, это череда последовательных шагов усовершенствования способов хранения и передачи данных. В данной статье попробуем более детально разобраться и проанализировать основные этапы в процессе развития носителей информации, провести их сравнительный анализ, начиная от самых примитивных - глиняных табличек, вплоть до последних успехов в создании машинно-мозгового интерфейса.

Задача поставлена действительно не шуточная, ишь на что замахнулся, скажет заинтригованный читатель. Казалось бы, каким образом можно, при соблюдении хотя бы элементарной корректности, сравнивать существенно разнящиеся между собой технологии прошлого и сегодняшнего дня? Поспособствовать решению этого вопроса может тот факт, что способы восприятия информации человеком собственно не сильно и претерпели изменения. Формы записи и формы считывания информации по средствам звуков, изображений и кодированных символов (письма) остались прежними. Во многом именно эта данность стала так сказать общим знаменателем, благодаря которому возможно будет провести качественные сравнения.

Методология

Для начала стоит воскресить в памяти прописные истины, которыми мы и будем далее оперировать. Элементарным носителем информации двоичной системы есть «бит», в то время как минимальной единицей хранения и обработки компьютером данных является «байт» при этом в стандартной форме, последний включает в себя 8 бит. Более привычный для нашего слуха мегабайт соответствует: 1 мбайт = 1024 кбайт = 1048576 байт.

Приведенные единицы на данный момент являются универсальными мерилами объема цифровых данных размещенных на том или ином носителе, поэтому их будет весьма легко использовать в дальнейшей работе. Универсальность состоит в том, что группой битов, фактически скоплением цифр, набором значений 1 / 0, можно описать любое материальное явление и тем самым его оцифровать. Неважно, будь это самый мудреный шрифт, картина, мелодия все эти вещи состоят из отдельных компонентов, каждому из которых присваивается свой уникальный цифровой код. Понимание этого базового принципа делает возможным наше продвижение дальше.

Тяжелое, аналоговое детство цивилизации

Само эволюционное становления нашего вида кинуло людей в объятие аналогового восприятия окружающего их пространства, что во многом и предрешило судьбу нашего технологического становления.

При первом взгляде современного человека, технологии, зарождавшиеся на самой заре человечества весьма примитивны, не искушенному в деталях именно так и может представится само существование человечества до перехода в эру «цифры», но так ли это, такое ли уж «детство» было тяжелое? Задавшись изучением поставленного вопроса, мы можем лицезреть весьма незатейливые технологии способов хранения и обработки информации на этапе их появления. Первым в своем роде носителем информации, созданным человеком, стали переносные площадные объекты с нанесенными на них изображениями. Таблички и пергаменты давали возможность не только сохранять, но и более эффективно, чем когда-либо до этого, эту информацию обрабатывать. На этом этапе появившаяся возможность концентрировать огромное количество информации в специально отведенных для этого местах – хранилищах, где эту информацию систематизировали и тщательно оберегали, стала основным толчком к развитию всего человечества.

Первые известные ЦОДы, как бы мы их назвали сейчас, до недавнего времени именующиеся библиотеками, возникли на просторах ближнего востока, между реками Нил и Евфрат, еще около II тысяч лет до н.э. Сам формат носителя информации все это время существенно определял способы взаимодействия с ним. И тут уже не столь важно, глинобитная дощечка это, папирусный свиток, или стандартный, целлюлозно-бумажный лист формата А4, все эти тысячи лет были тесно объединены аналоговым способом внесения и считывания данных с носителя.

Период времени на протяжении, которого доминировал именно аналоговый способ взаимодействия человека с его информационным скарбом успешно продлился в плоть до наших дней, лишь совсем недавно, уже в ХХI веке, окончательно уступив цифровому формату.

Очертив приблизительные временные и смысловые рамки аналогового этапа нашей цивилизации, мы теперь можем вернуться к поставленному, в начале этого раздела вопросу, уж таки они не эффективные эти методы хранения данных, что мы имели и до самого недавнего времени использовали, не ведая про iPad, флешки и оптические диски?

Давайте произведем расчет

Если откинуть последний этап упадка технологий аналогового хранения данных, который продлился последних лет 30, можно с прискорбием заметить, что эти сами технологии по большему счету тысячами лет не претерпевали существенных изменений. Действительно прорыв в этой сфере пошел сравнительно не давно, это конец ХIХ века, но об этом чуть ниже. До середины заявленного века, среди основных способов записи данных можно выделить два основных, это письмо и живопись. Существенное различие этих способов регистрации информации, абсолютно независимо от носителя, на котором она осуществляется, кроется в логике регистрации информации.
Изобразительное искусство
Живопись представляется наиболее простым способом передачи данных, не требующим, каких-то дополнительных знаний, как на этапе создания, так и пользования данными, тем самым фактически являясь исходным форматом воспринимаемым человеком. Чем более точно идет на поверхность холста передача отраженного света от поверхности окружающих предметов на сетчатку глаза писца, тем более информативное будет это изображение. Не доскональность техники передачи, материалов, которые использует создатель изображения, являются тем шумом, который в дальнейшем будет мешать для точного чтения зарегистрированной таким способом информации.

Сколь же информативно изображение, какое количественное значение информации несет рисунок. На этом этапе осознания процесса передачи информации графическим способом мы наконец можем окунуться в первые расчеты. В этом к нам на помощь придет базовый курс информатики.

Любое растровое изображение дискретно, это всего на всего набор точек. Зная это его свойство, мы можем перевести отображенную информацию, которую оно несет, в понятные для нас единицы. Поскольку присутствие / отсутствие контрастной точки фактически является простейшим бинарным кодом 1 / 0 то и, следовательно, каждая эта точка приобретает 1 бит информации. В свою очередь изображение группы точек, скажем 100х100, будет вмещать в себе:

V = K * I = 100 x 100 x 1 бит = 10 000 бит / 8 бит = 1250 байт / 1024 = 1.22 кбайт

Но давайте не забывать, что выше представленный расчет корректен только лишь для монохромного изображения. В случае куда более часто используемых цветных изображений, естественно, объем передаваемой информации существенно возрастет. Если принять условием достаточной глубины цвета 24 битную (фотографическое качество) кодировку, а она, напомню, имеет поддержку 16 777 216 цветов, следовательно мы получим, куда больший объем данных для того же самого количества точек:

V = K * I = 100 x 100 x 24 бит = 240 000 бит / 8 бит = 30 000 байт / 1024 = 29.30 кбайт

Как известно точка не имеет размера и в теории любая площадь, отведенная, под нанесение изображения может нести бесконечно большое количество информации. На практике же есть вполне определенные размеры и соответственно можно определить объем данных.

На основе множества проведенных исследований было установлено, что человек со среднестатистической остротой зрения, с комфортного для чтения информации расстояния (30 см), может различит около 188 линий на 1 сантиметр, что в современной технике приблизительно соответствует стандартному параметру сканирования изображения бытовыми сканерами в 600 dpi. Следовательно, с одного квадратного сантиметра плоскости, без дополнительных приспособлений, среднестатистический человек может считать 188:188 точек, что будет равноценно:

Для монохромного изображения:
Vm = K * I = 188 x 188 x 1 бит = 35 344 бит / 8 бит = 4418 байт / 1024 = 4.31 кбайт

Для изображения фотографического качества:
Vc = K * I = 188 x 188 x 24 бит = 848 256 бит / 8 бит = 106 032 байт / 1024 = 103.55 кбайт

Для большей наглядности, на основе полученных расчетов, можем легко установить сколько информации несет в себе такой привычный нам листок формата как А4 с габаритами 29.7/21 см:

VА4 = L1 x L2 x Vm = 29.7 см х 21 см х 4.31 кбайт = 2688.15 / 1024 = 2.62 мбайт – монохромной картинки

VА4 = L1 x L2 x Vm = 29.7 см х 21 см х 103.55 кбайт = 64584.14 / 1024 = 63.07 мбайт – цветной картинки

Письменность
Если с изобразительным искусством «картина» более-менее ясна, то с письмом не так все просто. Очевидные различие в способах передачи информации между текстом и рисунком диктуют различный подход в определении информативности этих форм. В отличии от изображения, письмо – это вид стандартизированной, кодированной передачи данных. Не зная заложенного в письмо кода слов и формирующих их букв информативная нагрузка, скажем шумерской клинописи, для большинства из нас вообще равна нулю, в то время как древние изображения на руинах того же Вавилона будут вполне корректно восприняты даже человеком абсолютно не сведущим о тонкостях древнего мира. Становится вполне очевидным, что информативность текста чрезвычайно сильно зависит от того в чьи руки он попал, от дешифрирования ее конкретным человеком.

Тем не менее, даже при таких обстоятельствах, несколько размывающих справедливость нашего подхода, мы можем вполне однозначно рассчитать то количество информации, которое размещалось в текстах на разного рода плоских поверхностях.
Прибегнув к уже знакомой нам двоичной системе кодирования и стандартному байту, письменный текст, который можно себе представить, как набор букв, формирующий слова и предложения, очень легко привести к цифровому виду 1 / 0.

Привычный для нас 8 битный байт, может обретать до 256 разных цифровых комбинаций, чего собственно должно хватить для цифрового описания любого существующего алфавита, а также цифр и знаков препинания. Отсюдова напрашивается вывод, что любой нанесенный стандартный знак алфавитного письма на поверхность, занимает 1 байт в цифровом эквиваленте.

Немного по-другому дело обстоит с иероглифами, которые также широко используются уже несколько тысяч лет. Заменяя одним знаком целое слово, эта кодировка явно куда более эффективнее использует отведенную ей плоскость с точки зрения информационной нагрузки нежели это происходит в языках, основанных на алфавите. В тоже время, количество уникальных знаков, каждому из которых нужно присвоить не повторную комбинацию сочетания 1 и 0 в разы большее. В самых распространенных существующих иероглифических языках: китайском и японском, по статистике, фактически используется не более 50 000 уникальных знаков, в японском и того менее, на данный момент министерство просвещения страны, для повседневного использования, определило всего 1850 иероглифов. В любом случае 256-ю комбинациями вмещающиеся в один байт тут уже не обойтись. Один байт хорошо, а два еще лучше, гласит видоизмененная народная мудрость, 65536 – именно столько цифровых комбинаций мы получим, используя два байта, чего в принципе становится достаточным для перевода активно используемого языка в цифровую форму, тем самым присваивая абсолютному большинству иероглифов два байта.

Существующая практика использования письма гласит нам о том, что на стандартный лист формата А4 можно разместить около 1800 читабельных, уникальных знака. Проведя не сложные арифметические вычисления можно установить сколько в цифровом эквиваленте будет нести информации один стандартный машинописный листок алфавитного, и более информативного иероглифического письма:

V = n * I = 1800 * 1 байт = 1800 / 1024 = 1.76 кбайт либо 2.89 байта / см2

V = n * I = 1800 * 2 байт = 3600 / 1024 = 3.52 кбайт либо 5.78 байта / см2

Индустриальный скачок

XIX век стал переломным, как для способов регистрации, так и хранения аналоговых данных, это стало следствием появления революционных материалов и методик записи информации, которым предстояло изменить ИТ-мир. Одним из главных новшеств стала технология записи звука.

Изобретение фонографа Томасом Эдисоном породило существование сначала цилиндров, с нанесенными на них бороздами, а в скором и пластинок - первых прообразов оптических дисков.

Реагируя на звуковые вибрации, резец фонографа неустанно проделывал канавки на поверхности как металлических, так и чуть позднее полимерных. В зависимости от уловленной вибрации резец наносил на материале закрученную канавку разной глубины и ширины, что в свою очередь давало возможность записывать звук и чисто механическим способом обратно воспроизводить, уже однажды выгравированные звуковые вибрации.

На презентации первого фонографа Т. Эдисоном в Парижской Академии Наук случился конфуз, один не молодой, ученный-лингвист, чуть было услышав репродукцию человеческой речи механическим устройством, сорвался с места и возмущенный бросился с кулаками на изобретателя, обвинив его в мошенничестве. По словам этого уважаемого члена академии, метал никогда не смог бы повторить мелодичности человеческого голоса, а сам Эдисон является обыкновенным чревовещателем. Но мы то с вами знаем, что это конечно не так. Более того в ХХ веке люди научились хранить звуковые записи в цифровом формате, и сейчас мы окунемся в некоторые цифры, после чего станет вполне понятно сколько информации умещается на обычной виниловой (материал стал самым характерным и массовом представителем этой технологии) пластинке.

Точно также, как и ранее с изображением, здесь мы будем отталкиваться от человеческих способностей улавливать информацию. Широко известно, что чаще всего человеческое ухо способно воспринимать звуковые колебания от 20 до 20 000 Герц, на основе этой константы, для перехода на цифровой формат звука, была принята величина в 44100 Герц, поскольку для корректного перехода, частота дискретизации колебания звука должна быть в два раза выше его исходного значения. Также не маловажным фактором тут является глубина кодировки каждого из 44100 колебаний. Параметр этот на прямую влияет на количество битов присущих одной волне, чем большее положение звуковой волны записано в конкретную секунду времени, тем большим количеством битов оно должно быть закодировано и тем более качественным будет звучать оцифрованный звук. Соотношением параметров звука, выбранным для самого распространенного на сегодняшний день формата, не искаженным сжатиями, применяемом на аудио дисках, является его 16 битная глубина, при дискретности колебаний 44.1 кГц. Хотя есть и более «емкие» соотношения приведенных параметров, вплоть до 32бит / 192 кГц, которые может быть были бы и более сопоставимы с фактическим качеством звучания грамм записи, но мы в расчеты включим соотношение 16 бит / 44.1 кГц. Именно выбранное соотношение в 80-90х годах ХХ столетия нанесло сокрушительный удар по индустрии аналоговой аудиозаписи, став фактически полноценной альтернативой ей.

И так, приняв за исходные параметры звука оглашенные величины можем рассчитать цифровой эквивалент объема аналоговой информации, которую несет в себе технология грамзаписи:

V = f * I = 44100 Герц * 16 бит = 705600 бит/сек / 8 = 8820 байт/сек / 1024 = 86.13 кбайт/сек

Расчетным путем мы получили необходимый объем информации для кодирования 1 секунды звучания качественной грамзаписи. Поскольку размеры пластинок варьировались, точно также как и густота бороздок на ее поверхности, объем информации на конкретных представителях такого носителя также существенно отличался. Максимальное время качественной записи на виниловую пластинку диаметром 30 см составляло менее 30 минут на одной стороне, что было на гране возможностей материала, обычно же это значение не превышало 20-22 минут. Имея эту характеристику, следует, что на виниловой поверхности могло разместиться:

Vv = V * t = 86.13 кбайт/сек * 60 сек * 30 = 155034 кбайт / 1024 = 151.40 мбайт

А по факту размещалось не более:
Vvf = 86.13 кбайт/сек * 60 сек * 22 = 113691.6 кбайт / 1024 = 111.03 мбайт

Общая площадь такой пластинки составляла:
S = π* r^2 = 3.14 * 15 см * 15 см= 706.50 см2

Фактически, на один квадратный сантиметр пластинки приходится 160.93 кбайт информации, естественно пропорция для разных диаметров будет изменяться не линейно, так как тут взята не эффективная площадь записи, а всего носителя.

Магнитная лента
Последним и, пожалуй, наиболее эффективным носителем данных, наносимых и читаемых аналоговыми методами, стала магнитная лента. Лента фактически единственный носитель, который довольно успешно пережил аналоговую эру.

Сама технология записи информации способом намагничивания, была запатентована еще в конце ХIХ века датским физиком Вольдемаром Поультсеном, но к сожалению, тогда она широкого распространения не приобрела. Впервые, технология в промышленном масштабе была использована только лишь в 1935 году немецкими инженерами, на ее базе был создан первый пленочный магнитофон. За 80 лет своего активного использования магнитная лента претерпела существенные изменения. Использовались разные материалы, разные геометрические параметры самой ленты, но все эти усовершенствования базировались на едином принципе, выработанном еще 1898 году Поультсеном, магнитной регистрации колебаний.

Одним из наиболее широко используемых форматов стала лента, состоящая из гибкой основы, на которую наносилась одна из окисей метала (железо, хром, кобальт). Ширина ленты, использующаяся в бытовых аудио магнитофонах, обычно была одно дюймовая (2.54 см), толщина ленты начиналась от 10 мкм, что касается протяженности ленты, то она существенно варьировалась в разных мотках и чаще всего составляла от сотен метров до тысячи. Для примера на бобину диаметром в 30 см могло вместится около 1000 м ленты.

Качество звучания зависело от многих параметров, как самой ленты, так и считывающей ее аппаратуры, но в общем при правильном сочетании этих самых параметров на магнитную ленту удавалось делать высококачественные студийные записи. Более высокое качество звучания добивались использованием большего объема ленты для записи единицы времени звука. Естественно, чем больше ленты используется для записи момента звучания, тем более широкий спектр частот удалось перенести на носитель. Для студийных, высококачественных материалов скорость регистрации на ленту составляла не менее 38.1 см/сек. При прослушивании записей в быту, для достаточно полного звучания хватало записи, осуществленной на скорости в 19 см/сек. Как результат, на 1000 м бобине могло разместится до 45 минут студийного звучания, либо до 90 минут приемлемого, для основной массы потребителей, контента. В случаях технических записей, либо речей, для которых ширина частотного диапазона при воспроизведении не играла особой роли, при расходе ленты в 1.19 см/сек на вышеупомянутую бобину, существовала возможность записать звуков аж на 24 часа.

Имея общее представление об технологиях записи на магнитную ленту во второй половине ХХ века, можно более-менее корректно перевести емкость бобинных носителей в понятные нам единицы измерения объема данных, как мы это уже совершали для грамзаписи.

В квадратном сантиметре подобного носителя разместится:
Vo = V / (S * n) = 86.13 кбайт/сек / (2.54 см * 1 см * 19) = 1.78 Kбайт/см2

Общий объем катушки с 1000 метрами пленки:
Vh = V * t = 86.13 кбайт/сек * 60 сек * 90 = 465102 кбайт / 1024 = 454.20 Мбайт

Не стоит забывать, что конкретный метраж ленты в бобине был весьма разным, это зависело, прежде всего, от самого диаметра бобины и толщины ленты. Довольно распространенными, в следствии приемлемых габаритов, широко использовались бобины, вмещающие в себя 500…750 метров пленки, что для рядового меломана было эквивалентом часового звучания, чего было вполне достаточно для теражирования среднестатистического музыкального альбома.

Довольно короткой, но от того не менее яркой была жизнь видео кассет, в которых использовался все тот же принцип регистрации аналогового сигнала на магнитную ленту. Ко времени промышленного использования этой технологии плотность записи на магнитную ленту кардинально возросла. На полудюймовую пленку длиной в 259.4 метра умещалось 180 минут видеоматериала с весьма сомнительным, как на сегодняшний день, качеством. Первые форматы видеозаписи выдавали картинку на уровне 352х288 линий, наилучшие образцы показывали результат на уровне 352х576 линий. В пересчете на битрейд, наиболее прогрессивные методы воспроизведения записи давали возможность приблизится к значению в 3060 кбит/сек, при скорости считывания информации с ленты в 2.339 см/сек. На стандартной трехчасовой кассете могло разместиться около 1724.74 Мбайт, что в общем не так и дурно, как результат видеокассеты массово оставались востребованными еще до самого недавнего времени.

Волшебная цифра

Появление и повсеместное внедрение цифры (бинарного кодирования) целиком и полностью обязано ХХ веку. Хотя сама философия кодирования двоичным кодом 1 / 0, Да / Нет, так или иначе витала среди человечества в разные времена и на разных континентах, набирая порою самых удивительных форм, окончательно материализовалась она именно в 1937 году. Студент Массачусетского Технологического Университета – Клод Шаннон, базируясь на работах великого британского (ирландского) математика Георга Буле, применил принципы Буленовской алгебры к электрическим цепям, что фактически и стало отправной точкой для кибернетики в том виде в котором мы знаем ее сейчас.

Менее чем за сто лет, как аппаратная, так и программная составная цифровых технологий претерпели огромное количество серьезных изменений. То же самое справедливо будет сказать и для носителей информации. Начиная от сверх неэффективных – бумажных носителей цифровых данных, мы пришли к сверх эффективным – твердо тельным хранилищам. В общем, вторая половина прошлого века прошла под знаменем экспериментов и поиска новых форм носителей, что можно лаконично назвать всеобщим бардаком формата.

Перфокарта
Перфокарты стали, пожалуй, первой ступенькой на пути взаимодействия ЭВМ и человека. Такое общение длилось довольно долго, порою даже сейчас этот носитель можно встретить в специфических НИИ раскиданных на просторах СНГ.

Одним из самых распространенных форматом перфокарт, был формат IBM введен еще в 1928 году. Этот формат стал базовым и для советской промышлености. Габариты такой перфокарты по ГОСТу составляли 18.74 х 8.25 см. Вмещалось на перфокарту не более 80 байт, на 1 см2 приходилось всего 0.52 байта. В таком исчислении, для примера, 1 Гигабайт данных был бы равен примерно 861.52 Гектарам перфокарт, а вес одного такого Гигабайта составлял чуть менее 22 тонн.

Магнитные ленты
Во 1951 году были выпущены первые образцы носителей данных базирующихся на технологии импульсного намагничивания ленты специально для регистрации на нее «цифры». Такая технология позволяла вносить на один сантиметр полудюймовой металлической ленты до 50 символов. В дальнейшем технология серьезно усовершенствовалась, позволяя во много крат увеличивать количество единичных значений на единицу площади, а также как можно более удешевлять материал самого носителя.

На данный момент, по самым последним заявлениям корпорации Sony, их нано разработки позволяют разместить на 1 см2 объем информации равен 23 Гигабайтам. Такие соотношения цифр наталкивают на мысль, что данная, технология ленточной магнитной записи себя не отжила и имеет довольно радужные перспективы дальнейшей эксплуатации.

Грамм запись
Наверное, наиболее удивительный метод хранения цифровых данных, но лишь на первый взгляд. Идея записи действующей программы на тонкий слой винила возникла в 1976 году в компании Processor Technology, что базировалась в Канзас Сити, США. Суть задумки состояла в том, чтоб максимально удешевить носитель информации. Сотрудники компании взяли аудио ленту, с записанными данными в уже существующем звуковом формате «Канзас Сити Стандарт», и перегнали ее на винил. Кроме удешевления носителя, данное решение позволило подшить выгравированную пластинку к обычному журналу, что позволило массово распространять небольшие программы.

В мае 1977 года подписчики журналов, в первые получили в своем номере пластинку, на которой размещался интерпретатор 4К BASIC для процессора Motorola 6800. Время звучания пластинки составляло 6 минут.
Данная технология в силу понятных причин не прижилась, официально, последняя пластинка, так званный Floppy-Rom, увидела свет в сентябре 1978 года, это был ее пятый выпуск.

Винчестеры
Первый винчестер был представлен компанией IBM в 1956 году, модель IBM 350 шла в комплекте с первым массовым компьютером компании. Общий вес такого «жесткого диска» составлял 971 кг. По габаритам он был сродни шкафу. Располагалось в нем 50 дисков, диаметр которых составлял 61 см. Общий объем информации, который мог разместиться на этом «винчестере» равнялся скромным 3.5 мегабайтам.

Сама технология записи данных была, если можно так сказать, производной от грамзаписи и магнитных лент. Диски, размещенные внутри корпуса, хранили на себе множество магнитных импульсов, которые вносились на них и считывались подвижной головкой регистратора. Словно патефонному волчку в каждый момент времени регистратор перемещались по площади каждого из дисков, получая доступ к необходимой ячейке, что несла в себе магнитный вектор определенной направленности.

На данный момент вышеупомянутая технология также жива и более того активно развивается. Менее года назад компания Western Digital выпустила первый в мире «винчестер» объемом в 10 Тбайт. В середине корпуса разместилось 7 пластин, а вместо воздуха в середину его был закачан гелий.

Оптические диски
Обязаны своим появлением партнерству двух корпораций Sony и Philips. Оптический диск был презентован в 1982 году, как годная, цифровая альтернатива аналоговым аудио носителям. При диаметре 12 см на первых образцах можно было разместить до 650 Мбайт, что при качестве звука 16 бит / 44.1 кГц, составляло 74 минуты звучания и это значение было выбрано не зря. Именно 74 минуты длится 9-я симфония Бетховена, которую чрезмерно любил толи один из совладельцев Sony, толи один из разработчиков со стороны Philips, и теперь она могла целиком вместится на один диск.

Технология процесса нанесения и считывания информации весьма проста. На зеркальной поверхности диска выжигаются углубления, которые при считке информации, оптическим способом, однозначно регистрируются как 1 / 0.

Технология оптических носителей также процветает и в нашем 2015 году. Технология известная нам как Blu-ray disc с четырех слойной записью вмещает на своей поверхности около 111.7 Гигабайт данных, при своей не слишком высокой цене, являясь идеальными носителями для весьма «емких» фильмов повышенной разрешающей способности с глубокой передачей цветов.

Твердотельные накопители, флэш память, SD карты
Все это детище одной технологии. Разработанный еще в 1950-х годах принцип записи данных на основе регистрации электрического заряда в изолированной области полупроводниковой структуры. Долгое время он не находил своей практической реализации для создания на его базе полноценного носителя информации. Главной причиной этому были большие габариты транзисторов, которые при максимально возможной их концентрации не могли породить на рынке носителей данных конкурентный продукт. О технологии помнили и периодически пытались ее внедрить на протяжении 70х-80х годов.

Действительно звездный час для твердотельных накопителей настал с конца 80-х, когда размеры полупроводников начали достигать приемлемых размеров. Японская Toshiba в 1989 году презентовала абсолютно новый тип памяти «Flash», от слова «Вспышка». Само это слово весьма хорошо символизировало главные плюсы и минусы носителей, реализованных на принципах данной технологии. Небывалая ранее скорость доступа к данным, довольно ограниченное количество циклов перезаписи и необходимость присутствия внутреннего источника питания для некоторых из такого рода носителей.

К сегодняшнему дню наибольшей концентрации объема памяти производители носителей достигли благодаря стандарту карт SDCX. При габаритах 24 х 32 х 2.1 мм они могут поддерживать до 2 Тбайт данных.

Передний край научного прогресса

Все носители, с которыми мы имели дело до этого момента, были из мира не живой природы, но давайте не забывать, что самый первый накопитель информации, с которым мы все имели дело это мозг человека.

Принципы функционирования нервной системы в общих чертах на сегодня уже ясны. И как бы это не могло звучать удивительно, физические принципы работы мозга вполне сопоставимы с принципами организации современных ЭВМ.
Нейрон – структурно функциональная единица нервной системы, она и формирует наш мозг. Микроскопическая клетка, весьма сложной структуры, являющаяся фактически аналогом, привычного нам, транзистора. Взаимодействие между нейронами происходит благодаря различным сигналам, которые распространяются с помощью ионов, в свою очередь генерирующих электрические заряды, таким образом создавая не совсем обычную электроцепь.

Но еще более интересным является сам принцип работы нейрона, как и его кремниевый аналог, эта структура зыблется на бинарном положении своего состояния. К примеру, в микропроцессорах за условный 1 / 0 принимают разницу уровней напряжения, нейрон в свою очередь обладает разностью потенциалов, фактически он в любой момент времени может обретать одно и двух возможных значений полярности: либо «+», либо «-». Существенное отличие нейрона от транзистора состоит в граничной скорости первого обретать противоположные значения 1 / 0. Нейрон в следствии своей структурной организации, в которую не будем вдаваться через чур подробно, в тысячи раз инертней от своего кремниевого собрата, что естественно сказывается на его быстродействии – количестве обработки запросов за единицу времени.

Но не все так печально для живых существ, в отличии от ЭВМ где выполнение процессов осуществляется в последовательном режиме, миллиарды нейронов, объеденных в мозг, решают поставленные задачи параллельно, что дает целый ряд преимуществ. Миллионы этих вот низкочастотных процессоров вполне успешно дает возможность, в частности человеку, взаимодействовать с окружающей средой.

Изучив структуру человеческого мозга, научное сообщество пришло к выводу – фактически головной мозг является цельной структурой, в которую уже входят и вычислительный процессор, и моментальная память, и память долговременная. В силу самой нейронной структуры мозга между этими аппаратными составными четких, физических границ нет, лишь розмытые зоны спецификации. Такое утверждение подтверждается десятками прецедентов из жизни, когда в силу определенных обстоятельств людям удаляли часть мозга, вплоть до половины общего объема. Пациенты после таких вмешательств, кроме того, что не превращались в «овощ», в некоторых случаях, со временем, восстанавливали все свои функции и счастливо доживали до глубокой старости, тем самым являясь живим доказательством глубины гибкости и совершенства нашего мозга.

Возвращаясь к теме статьи, можем прийти к интересному выводу: структура мозга человека фактически схожа с твердотельным накопителем информации, о котором речь шла чуть выше. После такого сравнения, помня о всех его упрощениях, мы можем задаться вопросом, какой же объем данных в таком случае может разместится в этом хранилище? Может быть опять же к удивлению, но мы можем получить вполне однозначный ответ, давайте же произведем расчет.

В результате проведенных в 2009 году научных экспериментов нейробиологом, доктором Бразильского университета в Рио-Де-Жанейро – Сюзанной Геркулано-Хаузел, было установлено, что в среднем человеческом мозге, весом около полтора килограмма, можно насчитать приблизительно 86 миллиардов нейронов, напомню, ранее ученные считали, что эта цифра для среднего значения равняется 100 миллиардам нейронов. Отталкиваясь от этих цифр и приравняв каждый отдельный нейрон фактически к одному биту, мы получим:

V = 86 000 000 000 бит / (1024 * 1024*1024) = 80.09 гбит / 8 =10.01 гигабайт

Много это или мало и насколько может быть конкурента эта среда для хранения информации? Сказать пока весьма сложно. Научное сообщество с каждым годом все больше нас радует продвижением в изучении нервной системы живых организмов. Можно даже встретить упоминания об искусственном внедрении информации в память млекопитающих. Но по большему счету секреты мышления мозга пока еще остаются для нас тайной.

Итог

Хотя в статье были представлены далеко не все виды носителей данных, коих огромное множество, наиболее характерные представители нашли в ней место. Подводя итог представленного материала можно четко проследит закономерность – вся история развития носителей данных базируется на наследственности этапов, предшествующих текущему моменту. Прогресс последних 25 лет в сфере носителей данных крепко опирается на полученный опыт, как минимум, последних 100…150 лет, при этом скорость роста емкости носителей за эти четверть века возрастает в геометрической прогрессии, что является уникальным случаем на протяжении всей известной нам истории человечества.

Не смотря на кажущеюся нам сейчас архаичность аналоговой регистрации данных, вплоть до конца ХХ века это был вполне конкурентный метод работы с информацией. Альбом с качественными изображениями мог вмещать в себе гигабайты цифрового эквивалента данных, которые до начала 1990-х просто физически было невозможно разместить на столь же компактном носителе, не говоря уже об отсутствии приемлемых способов работы с такими массивами данных.

Первые ростки записи на оптические диски и стремительное развитие накопителей HDD конца 1980-х, только за одно десятилетие сломили конкуренцию множества форматов аналоговых записей. Хотя первые музыкальные оптические диски и не отличались качественно от тех же виниловых пластинок, имея 74 минуты записи против 50-60 (двухсторонняя запись), но компактность, универсальность и дальнейшее развития цифрового направления ожидаемо, окончательно похоронило аналоговый формат для массового использования.

Новая эра носителей информации, на пороге которой мы стоим, может существенно повлиять на мир, в котором мы окажемся через 10…20 лет. Уже сейчас передовые работы в биоинженерии дают нам возможность поверхностно понимать принципы работы нейронных сетей, управлять в них определенными процессами. Хотя потенциал размещения данных на структурах схожих с мозгом человека, не так уж и велик, есть вещи, про которые не стоит забывать. Само функционирование нервной системы все еще довольно загадочно, как следствие малой ее изученности. Принципы размещения и хранения в ней данных уже при первом приближении очевидно, что действуют по несколько другим законом, нежели это будет справедливо к аналоговому и цифровому методу обработки информации. Как и при переходе от аналогового этапа развития человечества к цифровому, при переходе к эре освоения биологических материалов, два предыдущих этапа сослужат роль фундамента, некого катализатора для очередного скачка. Необходимость активизации на биоинженерном направлении была очевидна и ранее, но только сейчас технологический уровень человеческой цивилизации поднялся до того уровня, когда подобные работы действительно могут увенчаться успехом. Поглотит ли этот новый этап развития ИТ технологий этап предыдущий, как мы уже имели честь - это наблюдать, или будет идти параллельно, предсказывать рано, но то что он радикально изменит нашу жизнь – очевидно.

В эпоху становления человеческого общества людям хватало стен пещеры, чтобы зафиксировать нужную им информацию. Такая «база данных» целиком уместилась бы да флэш-карте размером в мегабайт. Однако за последние несколько десятков тысяч лет объем информации, которой вынужден оперировать человек, существенно возрос. Теперь для хранения данных широко используются дисковые накопители и облачные хранилища данных.

Считается, что история записи информации и ее хранения началась около 40 тыс. лет назад. Поверхности скал и стены пещер сохранили изображения представителей животного мира позднего палеолита. Гораздо позже в обиход вошли пластинки из глины. На поверхности такого древнего «планшета» человек мог наносить изображения и делать записи посредством заостренной палочки. Когда глиняный состав высыхал, запись фиксировалась на носителе. Недостаток глиняной формы хранения информации очевиден: такие таблички отличались хрупкостью и недолговечностью.

Примерно пять тысяч лет назад в Египте стали использовать более совершенный носитель информации - папирус. Сведения заносили на особые листы, которые изготовлялись из специально обработанных стеблей растения. Этот вид хранения данных был более совершенным: листы папируса легче глиняных табличек, писать на них гораздо удобнее. Данный вид хранения информации дожил в Европе до XI века новой эры.

В другой части света - в Южной Америке - хитроумные инки изобрели тем временем узелковое письмо. Информация в данном случае закреплялась при помощи узлов, которые в определенной последовательности завязывали на нити или веревке. Существовали целые «книги» из узелков, где фиксировались сведения о численности населения империи инков, о налоговых сборах, хозяйственной деятельности индейцев.

Впоследствии основным носителем информации на планете на несколько веков стала бумага. Ее применяли для печатания книг и средств массовой информации. В начале XIX века стали появляться первые перфокарты. Их делали из плотного картона. Эти примитивные машинные носители информации стали широко использовать для механического счета. Они нашли применение, в частности, при проведении переписей населения, их использовали и для управления ткацкими станками. Человечество вплотную приблизилось к технологическому прорыву, который произошел в XX веке. На смену механическим устройствам пришла электронная техника.

Что такое носители информации

Все материальные объекты способны нести в себе какую-либо информацию. Принято считать, что носители информации наделены вещественными свойствами и отражают определенные отношения между объектами действительности. Материальные свойства объектов определяются характеристиками веществ, из которых выполнены носители. Свойства отношений находятся в зависимости от качественных особенностей процессов и полей, посредством которых носители информации проявляются в материальном мире.

В теории информационных систем принято подразделять носители информации по происхождению, форме и размеру. В самом простом случае носители информации делят на:

  • локальные (к примеру, жесткий диск персонального компьютера);
  • отчуждаемые (съемные дискеты и диски);
  • распределенные (ими могут считаться линии связи).

Последний вид (каналы связи) можно при определенных условиях считать как носителями информации, так и средой для ее передачи.

В самом общем смысле носителями информации могут считаться разные по своей форме объекты:

  • бумага (книги);
  • пластинки (фотопластинки, граммофонные пластинки);
  • пленки (фото-, кинопленка);
  • аудиокассеты;
  • микроформы (микрофильм, микрофиша);
  • видеокассеты;
  • компакт-диски.

Многие носители информации известны с древних времен. Это каменные плиты с нанесенными на них изображениями; глиняные таблички; папирус; пергамент; береста. Гораздо позже появились иные искусственные носители информации: бумага, различные виды пластмассы, фотографические, оптические и магнитные материалы.

Информация заносится на носитель посредством изменения каких-либо физических, механических или химических свойств рабочей среды.

Общие сведения об информации и способах ее хранения

Любое природное явление так или иначе связано с сохранением, преобразованием и передачей информации. Она может быть дискретной или непрерывной.

В самом общем смысле носитель информации - это некая физическая среда, которую можно использовать для регистрации изменений и накопления информации.

Требования к искусственным носителям информации:

  • высокая плотность записи;
  • возможность неоднократного использования;
  • большая скорость считывания информации;
  • надежность и долговечность хранения данных;
  • компактность.

Отдельная классификация разработана для носителей информации, применяемых в электронно-вычислительных комплексах. К таким носителям информации относят:

  • ленточные носители;
  • дисковые носители (магнитные, оптические, магнитооптические);
  • флэш-носители.

Такое деление носит условный характер и не является исчерпывающим. При помощи особых устройств на компьютерной технике можно работать с традиционными аудио- и видеокассетами.

Характеристики отдельных носителей информации

В свое время наибольшую популярность получили магнитные носители информации. Данные в них представлены в виде участков магнитного слоя, который наносится на поверхность физического носителя. Сам носитель может иметь вид ленты, карты, барабана или диска.

Информация на магнитном носителе сгруппирована в зоны с промежутками между ними: они необходимы для качественной записи и считывания данных.

Носители информации ленточного типа используются для резервного копирования и хранения данных. Они представляют собой магнитную ленту объемом до 60 Гб. Иногда такие носители имеют вид ленточных картриджей значительно большего объема.

Дисковые носители информации могут быть жесткими и гибкими, сменными и стационарными, магнитными и оптическими. Они имеют обычно форму дисков или дискет.

Магнитный диск имеет вид пластмассового или алюминиевого плоского круга, который покрыт магнитным слоем. Фиксация данных на таком объекте осуществляется путем магнитной записи. Магнитные диски бывают переносными (сменными) или несменными.

Гибкие магнитные диски (флоппи-диски) имеют объем 1,44 Мб. Они упакованы с особые пластмассовые корпуса. Иначе такие носители информации именуют дискетами. Назначение их - временное хранение информации и перенос данных с одного компьютера на другой.

Жесткий магнитный диск нужен для постоянного хранения данных, которые часто используются в работе. Такой носитель представляет собой пакет их сцепленных между собой нескольких дисков, заключенных в прочный герметичный корпус. В обиходе жесткий диск часто называют «винчестером». Емкость такого накопителя может достигать нескольких сотен Гб.

Магнитооптический диск - это носитель информации, помещенный в особый пластиковый конверт, называемый картриджем. Это универсальное и очень надежное вместилище данных. Его отличительная черта - высокая плотность хранимой информации.

Принцип записи информации на магнитный носитель

Принцип записи данных на магнитный носитель основан на использовании свойств ферромагнетиков: они способны сохранять намагниченность после снятия действующего на них магнитного поля.

Магнитное поле создает соответствующая магнитная головка. В ходе записи двоичный код принимает форму электрического сигнала и подается на обмотку головки. Когда ток протекает через магнитную головку, вокруг нее формируется магнитное поле определенной напряженности. Под действием такого поля в сердечнике образуется магнитный поток. Его силовые линии замыкаются.

Магнитное поле взаимодействует с носителем информации и создает в нем состояние, которое характеризуется некоторой магнитной индукцией. Когда импульс тока прекращается, носитель сохраняет свое состояние намагниченности.

Чтобы воспроизвести запись, используют считывающую головку. Магнитное поле носителя замыкается через сердечник головки. Если носитель перемещается, изменяется магнитный поток. В считывающую головку поступает сигнал воспроизведения.

Одна из важных характеристик магнитного носителя информации - плотность записи. Она находится в прямой зависимости от свойств магнитного носителя, типа магнитной головки и ее конструкции.