XXXII. Коммуникационное оборудование

Собеседники. Как правило, в сетях общего доступа невозможно предоставить каждой паре абонентов собственную физическую линию связи , которой они могли бы монопольно «владеть» и использовать в любое время. Поэтому в сети всегда применяется какой-либо способ коммутации абонентов, который обеспечивает разделение имеющихся физических каналов между несколькими сеансами связи и между абонентами сети.

Коммутация в городских телефонных сетях

Городская телефонная сеть - это совокупность линейных и станционных сооружений. Сеть, имеющая одну АТС, называется нерайонированной. Линейные сооружения такой сети состоят только из абонентских линий. Типовое значение ёмкости такой сети 8-10 тысяч абонентов. При больших ёмкостях из-за резкого увеличения длины АЛ целесообразно переходить на районированное построение сети. В этом случае территория города делится на районы, в каждом из которых сооружается одна районная АТС (РАТС), к которой подключаются абоненты этого района. Соединения абонентов одного района осуществляется через одну РАТС, абонентов разных РATC - через две. РАТС связываются между собой соединительными линиями в общем случае по принципу «каждая с каждой». Общее число пучков между РАТС равно количество РАТС/2. При возрастании ёмкости сети число пучков СЛ, связывающих РATC между собой по принципу «каждая с каждой», начинает резко расти, что приводит к чрезмерному возрастанию расхода кабеля и затрат на организацию связи и Поэтому при ёмкостях сети свыше 80 тысяч абонентов применяют дополнительный коммутационный узел. На такой сети связь между АТС разных районов осуществляется через узлы входящего сообщения (УВС), а связь внутри своего узлового района (УР осуществляется по принципу «каждая с каждой» или через свой УВС.

Самостоятельная работа : стр. 646–651, 720–722,
стр. 67–79, 542–544, –651, стр. 48–58; стр. 408–431

Повторитель (репитер) – передаёт электрические сигналы от одного участка кабеля к другому, предварительно усиливая их и восстанавливая их форму. Используется в локальных сетях для увеличения их протяжённости. В терминологии OSI функционирует на физическом уровне.

Коммутаторы – многопортовые повторители, которые считывают адрес назначения каждого входящего пакета и передают его только через тот порт, который соединён с компьютером-получателем. Могут функционировать на разных уровнях OSI. (другая версия – канальный уровень)

Концентратор (hub)– многопортовое устройство для усиления сигналов при передаче данных. Используется для добавления в сеть рабочих станций или для увеличения расстояния между сервером и рабочей станцией (суммарная пропускная способность входных каналов выше пропускной способности выходного канала). Работает как коммутатор, но вдобавок может усиливать сигнал.

Мультиплексор (устройство или программа) – позволяет передавать по одной коммуникационной линии одновременно несколько различных сигналов.

Шлюз – передаёт данные между сетями или прикладными программами, использующими разные протоколы (способы кодировки, физические среды для передачи данных), например, подключения локальной сети к глобальной. Функционирует на прикладном уровне.

Мост – соединяет две сети с одинаковыми протоколами, усиливает сигнал и пропускает только те сигналы, которые адресованы компьютеру, находящемуся по другую сторону моста. Другая редакция : компьютер с двумя сетевыми картами, предназначенный для соединения сетей.

Маршрутизатор – (соединяет разные ЛВС, как и мост, пропускает только ту информацию, которая предназначена для сегмента, с которым он соединён.) Отвечает за выбор маршрута передачи пакетов между узлами. Выбор маршрута осуществляется на основе:
– протокола маршрутизации, содержащего информацию о топологии сети;

– специального алгоритма маршрутизации.

Функционирует на сетевом уровне OSI.

Непонятные вопросы :

Устройство сопряжения ЭВМ с несколькими каналами связи называется:

– концентратор/повторитель/ мультиплексор/модем

Устройство коммутирующее несколько каналов связи называется:

– мультиплексор передачи данных/концентратор/повторитель/модем

XXXIII. Основные понятия криптографии

Самостоятельная работа : стр. 695–699

Криптография (шифрование) – кодирование данных, посылаемых в сеть, так, чтобы их могли прочитать только стороны, участвующие в конкретной операции. Надёжность защиты зависит от алгоритма шифрования и длины ключа в битах.

Метод шифрования – алгоритм, описывающий порядок преобразования исходного сообщения в результирующее. Пример . Метод гаммирования – замена букв нотами по определённому алгоритму.

Ключ шифрования – набор параметров, необходимых для применения метода.Другая редакция: – последовательность символов, сохранённых на жёстком или съёмном диске.

Статический ключ – не меняется при работе с разными сообщениями.

Динамический ключ – для каждого сообщения изменяется.

Типы методов шифрования .

Симметричные : один и тот же ключ используется и для шифровки, и для дешифровки. Неудобен в электронной коммерции, так как у продавца и покупателя должны быть разные права к доступу информации. Продавец посылает всем покупателям одни и те же каталоги, но покупатели возвращают ему конфиденциальную информацию о своих кредитных картах, и нельзя смешивать заказы и их оплату для разных покупателей.

Способы передачи цифровой информации

Цифровые данные по проводнику передаются путем смены текущего напряжения: нет на­пряжения - "О", есть напряжение - "1". Существуют два способа передачи информации по физической передающей среде: цифровой и аналоговый.

Примечания: 1. Если все абоненты компьютерной сети ведут передачу данных по каналу на одной частоте, такой канал называется узкополосным (пропускает одну частоту).

2. Если каждый абонент работает на своей собственной частоте по одному ка­налу, то такой канал называется широкополосным (пропускает много частот). Использование широкополосных каналов позволяет экономить на их количест­ве, но усложняет процесс управления обменом данными.

При цифровом или узкополосном способе передачи (рис. 6.10) дан­ные передаются в их естественном виде на единой частоте. Узкополосный способ позволяет передавать только цифровую информацию, обеспечивает в каждый данный момент времени возможность использования передающей среды только двумя пользователями и допускает нормальную работу только на ограниченном расстоянии (длина линии связи не более 1000 м). В то же время узкополосный способ передачи обеспечивает высокую скорость обмена данными - до 10 Мбит/с и позволяет создавать легко конфигурируемые вычисли­тельные сети. Подавляющее число локальных вычислительных сетей использует узкополос­ную передачу.

Рис. 6.10. Цифровой способ передачи

Аналоговый способ передачи цифровых данных (рис. 6.11) обеспечивает широко­полосную передачу за счет использования в одном канале сигналов различных несущих частот.

При аналоговом способе передачи происходит управление параметрами сигнала несу­щей частоты для передачи по каналу связи цифровых данных.

Сигнал несущей частоты представляет собой гармоническое колебание, описываемое уравнением:

Х=Х max sin (ωt +φ 0),

где Х max - амплитуда колебаний;

ω - частота колебаний;

φ - начальная фаза колебаний.

Передать цифровые данные по аналоговому каналу можно, управляя одним из пара­метров сигнала несущей частоты: амплитудой, частотой или фазой. Так как необходимо передавать данные в двоичном виде (последовательность единиц и нулей), то можно предложить следующие способы управления (модуляции ): амплитудный, частотный, фазовый.

Проще всего понять принцип амплитудной модуляции: "0" - отсутствие сигна­ла, т.е. отсутствие колебаний несущей частоты; "1" - наличие сигнала, т.е. наличие колеба­ний несущей частоты. Есть колебания - единица, нет колебаний - нуль (рис. 6.11а).

Частотная модуляция предусматривает передачу сигналов 0 и 1 на разной часто­те. При переходе от 0 к 1 и от 1 к 0 происходит изменение сигнала несущей частоты (рис. 6.116).

Наиболее сложной для понимания является фазовая модуляция. Суть ее в том, что при переходе от 0 к 1 и от 1 к 0 меняется фаза колебаний, т.е. их направление (рис. 6.11в).

В сетях высокого уровня иерархии - глобальных и региональных используется также и широкополосная передача , которая предусматривает работу для каждого або­нента на своей частоте в пределах одного канала. Это обеспечивает взаимодействие боль­шого количества абонентов при высокой скорости передачи данных.

Широкополосная передача позволяет совмещать в одном канале передачу цифровых данных, изображения и звука, что является необходимым требованием современных систем мультимедиа.

Пример 6.5. Типичным аналоговым каналом является телефонный канал. Когда або­нент снимает трубку, то слышит равномерный звуковой сигнал - это и есть сигнал несущей частоты. Так как он лежит в диапазоне звуковых частот, то его называют то­нальным сигналом. Для передачи по телефонному каналу речи необходимо управлять сигналом несущей частоты - модулировать его. Воспринимаемые микрофоном звуки преобразуются в электрические сигналы, а те, в свою очередь, и модулируют сигнал несущей частоты. При передаче цифровой информации управление произво­дят информационные байты - последовательность единиц и нулей.

Аппаратные средства

Чтобы обеспечить передачу информации из ЭВМ в коммуникационную среду, необходимо согласовать сигналы внутреннего интерфейса ЭВМ с параметрами сигналов, передаваемых по каналам связи. При этом должно быть выполнено как физическое согласование (форма, амплитуда и длительность сигнала), так и кодовое.

Технические устройства, выполняющие функции сопряжения ЭВМ с каналами связи, называются адаптерами или сетевыми адаптерами. Один адаптер обеспечи­вает сопряжение с ЭВМ одного канала связи.

Рис. 6.11. Способы передачи цифровой информации по аналоговому сигналу:

а – амплитудная модуляция; б – частотная; в - фазовая

Кроме одноканальных адаптеров используются и многоканальные устройства - мультиплексоры передачи данных или просто мультиплексоры .

Мультиплексор передачи данных - устройство сопряжения ЭВМ с несколькими каналами связи.

Мультиплексоры передачи данных использовались в системах телеобработки дан­ных - первом шаге на пути к созданию вычислительных сетей. В дальнейшем при появле­нии сетей со сложной конфигурацией и с большим количеством абонентских систем для реализации функций сопряжения стали применяться специальные связные процессоры.

Как уже говорилось ранее, для передачи цифровой информации по каналу связи необ­ходимо поток битов преобразовать в аналоговые сигналы, а при приеме информации из ка­нала связи в ЭВМ выполнить обратное действие - преобразовать аналоговые сигналы в поток битов, которые может обрабатывать ЭВМ. Такие преобразования выполняет специ­альное устройство - модем.

Модем - устройство, выполняющее модуляцию и демодуляцию информа­ционных сигналов при передаче их из ЭВМ в канал связи и при приеме в ЭВМ из канала связи.

Наиболее дорогим компонентом вычислительной сети является канал связи. Поэтому при построении ряда вычислительных сетей стараются сэкономить на каналах связи, ком­мутируя несколько внутренних каналов связи на один внешний. Для выполнения функций коммутации используются специальные устройства - концентраторы .

Концентратор - устройство, коммутирующее несколько каналов связи на один путем частотного разделения.

В ЛВС, где физическая передающая среда представляет собой кабель ограниченной длины, для увеличения протяженности сети используются специальные устройства - по­вторители .

Повторитель - устройство, обеспечивающее сохранение формы и ампли­туды сигнала при передаче его на большее, чем предусмотрено данным типом физической передающей среды, расстояние.

Существуют локальные и дистанционные повторители. Локальные повторители позволяют соединять фрагменты сетей, расположенные на расстоянии до 50м, а дистан­ционные - до 2000 м.

Самостоятельная работа : стр. 646–651, 720–722, стр. 67–79, 542–544, –651, стр. 48–58; стр. 408–431

Повторитель (репитер) передаёт электрические сигналы от одного участка кабеля к другому, предварительно усиливая их и восстанавливая их форму. Используется в локальных сетях для увеличения их протяжённости. В терминологии OSI функционирует на физическом уровне.

Коммутаторы – многопортовые повторители, которые считывают адрес назначения каждого входящего пакета и передают его только через тот порт, который соединён с компьютером-получателем. Могут функционировать на разных уровнях OSI. (другая версия – канальный уровень)

Концентратор (hub)– многопортовое устройство для усиления сигналов при передаче данных. Используется для добавления в сеть рабочих станций или для увеличения расстояния между сервером и рабочей станцией (суммарная пропускная способность входных каналов выше пропускной способности выходного канала). Работает как коммутатор, но вдобавок может усиливать сигнал.

Мультиплексор (устройство или программа) – позволяет передавать по одной коммуникационной линии одновременно несколько различных сигналов.

Шлюз – передаёт данные между сетями или прикладными программами, использующими разные протоколы (способы кодировки, физические среды для передачи данных), например, подключения локальной сети к глобальной. Функционирует на прикладном уровне.

Мост – соединяет две сети с одинаковыми протоколами, усиливает сигнал и пропускает только те сигналы, которые адресованы компьютеру, находящемуся по другую сторону моста. Другая редакция : компьютер с двумя сетевыми картами, предназначенный для соединения сетей.

Маршрутизатор – (соединяет разные ЛВС, как и мост, пропускает только ту информацию, которая предназначена для сегмента, с которым он соединён.) Отвечает за выбор маршрута передачи пакетов между узлами. Выбор маршрута осуществляется на основе: – протокола маршрутизации, содержащего информацию о топологии сети;

– специального алгоритма маршрутизации.

Функционирует на сетевом уровне OSI.

Непонятные вопросы :

Устройство сопряжения ЭВМ с несколькими каналами связи называется:

– концентратор/повторитель/ мультиплексор/модем

Устройство коммутирующее несколько каналов связи называется:

– мультиплексор передачи данных/концентратор/повторитель/модем

  1. Основные понятия криптографии

Самостоятельная работа : стр. 695–699

Криптография (шифрование) – кодирование данных, посылаемых в сеть, так, чтобы их могли прочитать только стороны, участвующие в конкретной операции. Надёжность защиты зависит от алгоритма шифрования и длины ключа в битах.

Метод шифрования – алгоритм, описывающий порядок преобразования исходного сообщения в результирующее. Пример . Метод гаммирования – замена букв нотами по определённому алгоритму.

Ключ шифрования – набор параметров, необходимых для применения метода. Другая редакция: – последовательность символов, сохранённых на жёстком или съёмном диске.

Статический ключ – не меняется при работе с разными сообщениями.

Динамический ключ – для каждого сообщения изменяется.

Типы методов шифрования .

Симметричные : один и тот же ключ используется и для шифровки, и для дешифровки. Неудобен в электронной коммерции, так как у продавца и покупателя должны быть разные права к доступу информации. Продавец посылает всем покупателям одни и те же каталоги, но покупатели возвращают ему конфиденциальную информацию о своих кредитных картах, и нельзя смешивать заказы и их оплату для разных покупателей.

Ассиметричные (несимметричные ): основываются на специальных математических методах, которые создают пару ключей так, что то, что зашифровано одним ключом, может быть дешифровано только другим, и наоборот. Один из ключей называется открытым , его может получить каждый желающий. Второй ключ разработчик ключа оставляет себе, он называется закрытым (секретным) .

Заказы, договоры шифруются открытым ключом, но их может прочитать только владелец закрытого ключа. Если клиент получил файл, к которому не подходит его ключ, значит его послала не его фирма.

Рассмотрим в данной статье основные методы коммутации в сетях.

В традиционных телефонных сетях, связь абонентов между собой выполняется с помощью коммутации каналов связи. В начале коммутация телефонных каналов связи выполнялась вручную, далее коммутацию выполняли автоматические телефонные станции (АТС).

Аналогичный принцип используется и в вычислительных сетях. В качестве абонентов выступают территориально удаленные вычислительные машины в компьютерной сети. Физически не представляется возможным предоставить каждому компьютеру свою собственную некоммутируемую линию связи, которой они пользовались бы в течении всего времени. Поэтому практически во всех компьютерных сетях всегда используется какой-либо способ коммутации абонентов (рабочих станций), выполняющий возможность доступа к существующим каналам связи для нескольких абонентов, для обеспечения одновременно нескольких сеансов связи.

Коммутация - это процесс соединения различных абонентов коммуникационной сети через транзитные узлы. Коммуникационные сети должны обеспечивать связь своих абонентов между собой. Абонентами могут выступать ЭВМ, сегменты локальных сетей, факс-аппараты или телефонные собеседники.

Рабочие станции подключаются к коммутаторам с помощью индивидуальных линий связи, каждая из которых используется в любой момент времени только одним, закрепленным за этой линией, абонентом. Коммутаторы соединяются между собой с использованием разделяемых линии связи (используются совместно несколькими абонентами).

Рассмотрим три основные наиболее распространенные способы коммутации абонентов в сетях:

  • коммутация каналов (circuit switching);
  • коммутация пакетов (packet switching);
  • коммутация сообщений (message switching).

Коммутация каналов

Коммутация каналов подразумевает образование непрерывного составного физического канала из последовательно соединенных отдельных канальных участков для прямой передачи данных между узлами. Отдельные каналы соединяются между собой специальной аппаратурой - коммутаторами, которые могут устанавливать связи между любыми конечными узлами сети. В сети с коммутацией каналов перед передачей данных всегда необходимо выполнить процедуру установления соединения, в процессе которой и создается составной канал.

Время передачи сообщения при этом определяется пропускной способностью канала, длинной связи и размером сообщения.

Коммутаторы, а также соединяющие их каналы должны обеспечивать одновременную передачу данных нескольких абонентских каналов. Для этого они должны быть высокоскоростными и поддерживать какую-либо технику мультиплексирования абонентских каналов.

Достоинства коммутации каналов:

  • постоянная и известная скорость передачи данных;
  • правильная последовательность прихода данных;
  • низкий и постоянный уровень задержки передачи данных через сеть.

Недостатки коммутации каналов:

  • возможен отказ сети в обслуживании запроса на установление соединения;
  • нерациональное использование пропускной способности физических каналов, в частности невозможность применения пользовательской аппаратуры, работающей с разной скоростью. Отдельные части составного канала работают с одинаковой скоростью, так как сети с коммутацией каналов не буферизуют данные пользователей;
  • обязательная задержка перед передачей данных из-за фазы установления соединения.

Коммутация сообщений – разбиение информации на сообщения, каждый из которых состоит из заголовка и информации.

Это способ взаимодействия, при котором создается логический канал, путем последовательной передачи сообщений через узлы связи по адресу указанному в заголовке сообщения.

При этом каждый узел принимает сообщение, записывает в память, обрабатывает заголовок, выбирает маршрут и выдает сообщение из памяти в следующий узел.

Время доставки сообщения определяется временем обработки в каждом узле, числом узлов и пропускной способности сети. Когда заканчивается передача информации из узла А в узел связи В, то узел А становится свободным и может участвовать в организации другой связи между абонентами, поэтому канал связи используется более эффективно, но система управления маршрутизации будет сложной.
Сегодня коммутация сообщений в чистом виде практически не существует.

Коммутация пакетов - это особый способ коммутации узлов сети, который специально создавался для наилучшей передачи компьютерного трафика (пульсирующего трафика). Опыты по разработке самых первых компьютерных сетей, в основе которых лежала техника коммутации каналов, показали, что этот вид коммутации не предоставляет возможности получить высокую пропускную способность вычислительной сети. Причина крылась в пульсирующем характере трафика, который генерируют типичные сетевые приложения.

При коммутации пакетов все передаваемые пользователем сети сообщения разбиваются в исходном узле на сравнительно небольшие части, называемые пакетами. Необходимо уточнить, что сообщением называется логически завершенная порция данных - запрос на передачу файла, ответ на этот запрос, содержащий весь файл, и т. п. Сообщения могут иметь произвольную длину, от нескольких байт до многих мегабайт. Напротив, пакеты обычно тоже могут иметь переменную длину, но в узких пределах, например от 46 до 1500 байт (EtherNet). Каждый пакет снабжается заголовком, в котором указывается адресная информация, необходимая для доставки пакета узлу назначения, а также номер пакета, который будет использоваться узлом назначения для сборки сообщения.

Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета.

Достоинства коммутации пакетов:

  • более устойчива к сбоям;
  • высокая общая пропускная способность сети при передаче пульсирующего трафика;
  • возможность динамически перераспределять пропускную способность физических каналов связи.

Недостатки коммутации пакетов:

  • неопределенность скорости передачи данных между абонентами сети;
  • переменная величина задержки пакетов данных;
  • возможны потери данных из-за переполнения буферов;
  • возможны нарушения последовательности прихода пакетов.

В компьютерных сетях применяется коммутация пакетов.

Cпособы передачи пакетов в сетях:

  • Дейтаграммный способ – передача осуществляется как совокупность независимых пакетов. Каждый пакет двигается по сети по своему маршруту и пользователю пакеты поступают в произвольном порядке.
    • Достоинства: простота процесса передачи.
    • Недостатки: низкая надежность засчет возможности потери пакетов и необходимость программного обеспечения для сборки пакетов и восстановления сообщений.
  • Логический канал - это передача последовательности связанных в цепочки пакетов, сопровождающихся установкой предварительного соединения и подтверждением приема каждого пакета. Если i-ый пакет не принят, то все последующие пакеты не будут приняты.
  • Виртуальный канал – это логический канал с передачей по фиксированному маршруту последовательности связанных в цепочки пакетов.
    • Достоинства: сохраняется естественная последовательность данных; устойчивые пути следования трафика; возможно резервирование ресурсов.
    • Недостатки: сложность аппаратной части.

В данной статье мы рассмотрели основные методы коммутации в вычислительных сетях, с описание каждого метода коммутации с указанием достоинст и недостатков.